Почвенное питание растений. Питание растений Процесс питания растений и его значение

Питания растений - совокупность процессов, которые осуществляют поглощения растениями веществ, необходимых для поддержания их жизнедеятельности. У растений выделяют гетеротрофный и автотрофный типы питания.

БИОЛОГИЯ + гнездовка обычная (Neotia nidus-avis (L. ) - многолетнее травянистое " и растение из семейства ятрышников. Научное название рода Neotia происходит от греческого слова, означавшего" гнездо ". Греческое название" nidus-avis " (в переводе птичье гнездо ) и украинский "гнездовка" данные растении за характерный вид ее корневого сплетение, которое масс форму гнезда птицы. в Украине гнездовка обычную можно встретить в Карпатах, в лесной и лесостепной зонах, на севере степной зоны, в Горном Крыму. Растет в тенистых лиственных лесах и кустарниках на кислом гумусе или среди гниющих корней и пней. Это сапрофитная растение, масс желтый цвет, потому что полностью лишена хлорофилла. Питательные вещества она получает в сообществе с грибами. Долгое время растение развивается под землей. Лишь на 9-Ю год формирует наземный цветоносный побег, жить которому около двух месяцев. Он на 20-30 см возвышается над прошлогодними листьями. Стебель покрыто буроватыми чешуйками - это все, что осталось от листьев. Цветки собраны в густую кисть, по цвету не отличаются от

стебли, имеют медовый запах и этим привлекают опылителей. Гнездовка способна размножаться как семенами, так и с помощью корневищ, однако первый способ в природе наблюдается чаще. Иногда растение цветет и даже плодоносит прямо под землей. Вид, занесенный в Красную книгу Украины (III категория ).

У растений различают воздушное (слоеное) и минеральное (корневое) питание, которые интегрируются для обеспечения растительного организма органическими веществами. Органические молекулы синтезируются растениями в процессе фотосинтеза из неорганических, каковы вода, углекислый газ, макро- и микроэлементы. Воздушное питания - это процесс поглощения и усвоения из воздуха углекислого газа, который является исходным продуктом для фотосинтеза. СO2 является источником углерода для синтеза растениями собственных органических соединений. Поступления углекислого газа происходит через устьица листа, поэтому именно этот вегетативный орган является органом воздушного питания. Для образования 1 г углеводов в процессе фотосинтеза необходимо около 1,47 г СО2. Кроме того, листок обеспечивает поглощение световой энергии для фотосинтеза. Фотосинтез осуществляется благодаря поступлению большого количества световой энергии в специализированные структуры - хлоропласты. Общая суммарная поверхность хлоропластов превышает площадь листьев в сотни раз. В хлоропластах сосредоточено все пигментный комплекс, образованный хлорофилла и каротиноидами. Зеленые пигменты хлорофиллы поглощают красные и синие лучи, а зеленые в основном отражаются. Сейчас известно около десяти магнийсодержащих зеленых пигментов-хлорофиллов, среди которых важнейшее значение для водорослей и высших растений имеют хлорофиллы а и b. Наряду с зелеными пигментами в хлоропластах есть и желтые (ксантофиллы), оранжево-желтые (каротины) пигменты, называемые каротиноидами. Это вспомогательные фотосинтезирующие пигменты поглощают синие, фиолетовые и в определенной степени зеленые лучи и передают энергию этих лучей к хлорофилла а.

Минеральное питание - это процесс поглощения и усвоения из почвы воды и химических элементов, необходимых для жизнедеятельности растительного организма. Органом, который обеспечивает минеральное питание, корень. Химические элементы и вещества, которые растение поглощает из почвы, для образования сложных органических соединений, терморегуляции, транспортировки веществ, обеспечение тургора и тому подобное.

Вода, поступившая в растительный организм в процессе минерального питания, используется и для фотосинтеза в качестве исходного неорганическое соединение. Под действием света при участии ферментов молекулы воды расщепляются (фотолиз воды) на протоны водорода и молекулярный кислород, который выделяется в атмосферу, то есть вода у растений есть донором водорода для протекания реакций фотосинтеза.

Значение химических элементов обусловлено их участием в построении химических веществ (структурная функция), в обмене веществ как составляющие большинства ферментов (каталитическая функция) и в регуляции процессов жизнедеятельности (регуляторная функция). В зависимости от содержания минеральных элементов в тканях растений, их принято делить на макро-, микро- и ультрамикроэлементы. Макроэлементы - это элементы, которые нужны растению в значительном количестве. Кроме органогенов (Карбон, кислород, водород, азот), к этой группе относятся фосфор, кальций, калий, серу, магний Ферум. А элементы, которые растение нуждается в незначительном количестве, называются микроэлементами. К ним относятся марганец, молибден, Бор, медь, хлор, Кобальт, Цинк, Натрий и др. Ультамикроелементы - это химические элементы, содержание которых в растении составляет от миллионных долей процента. К этой группе относятся Цезий, Кадмий, Аргентум, Радий и др.

Итак, гетеротрофный тип питания с использованием готовых органических веществ характерен для всех растительных организмов, а автотрофное питания, которое обеспечивает синтез органических веществ из неорганических, осуществляется благодаря воздушном и минеральному питанию и свойственно для зеленых растительных организмов, которые имеют фотосинтезирующие пигменты.

Питание - процесс поглощения и усвоения из окружающей среды необходимых для жизни веществ.

Процесс почвенного питания

Процессы поступления в организм растения растворов минеральных веществ из почвы и усвоения их клетками называют почвенным питанием. У большинства наземных растений оно происходит с помощью корня. В зоне всасывания корневые волоски поглощают воду и растворенные в ной минеральные вещества из почвы. Они тесно соприкасаются с комочками почвы и почвенным раствором. Слизь, образующаяся на поверхности корневых волосков, растворяет минеральные частицы почвы, облегчая их поглощение.

Поглощенные корневыми волосками вода и минеральные вещества поступают в проводящую зону корня. Здесь по сосудам проводящей ткани они под давлением поступают в стебель. Это давление называют корневым. Наличие корневого давления доказывает «плач» растений - выделение сока из поврежденного или перерезанного стебля. Особенно интенсивно сокодвижение происходит весной. У многих комнатных растений рано утром можно наблюдать выделение капелек воды но краям . Это явление тоже свидетельствует о корневом давлении.

Зависимость почвенного питания от внешней среды

Работа корней зависит от температуры почвы. При низких температурах всасывание воды корнями ослабевает и даже приостанавливается, корневое давление надает. Па почвенное питание растений оказывает влияние состав почвы, наличие в ней минеральных веществ. Установлено, что соединения азота, фосфора, необходимы растениям в больших количествах. Так, растения пшеницы на площади 1 га поглощают более 40 кг азота, 20 кг фосфора, 25 кг калия. Недостаток азота задерживает рост растения. При нехватке фосфора задерживается цветение и . Такие элементы, как железо, медь, цинк и др., требуются растению в очень малых количествах. Однако недостаток любого элемента в питании растений отрицательно сказывается на его развитии. В естественных природных условиях поглощенные из почвы минеральные вещества частично возвращаются с упавшими листьями. На полях, занятых сельскохозяйственными растениями, почва истощается, так как питательные вещества забирают с урожаем. Поэтому на поля весной и осенью вносят удобрения, обеспечивающие питание растений.

Особые способы питания растений

Некоторые растения приспособились восполнять недостаток элементов питания своеобразным способом - получать питательные вещества от других живых организмов.

    Химический состав и питание растений
  • Роль отдельных элементов в жизни растений. Вынос питательных веществ с урожаем сельскохозяйственных культур
  • Питание растений
  • Высшие растения являются автотрофными организмами, т. е они сами синтезируют органические вещества за счет минеральных соединений, в то время как для животных и подавляющего большинства микроорганизмов характерен гетеротрофный тип питания - использование органических веществ, ранее синтезированных другими организмами. Накопление сухого вещества растений происходит благодаря усвоению углекислого газа через листья (так называемое «воздушное питание»), а воды, азота и зольных элементов - из почвы через корни («корневое питание»).

    Воздушное питание

    Фотосинтез является основным процессом, приводящим к образованию органических веществ в растениях. При фотосинтезе солнечная энергия в зеленых частях растений, содержащих хлорофилл, превращается в химическую энергию, которая используется на синтез углеводов из углекислого газа и воды. На световой стадии процесса фотосинтеза происходит реакция разложения воды с выделением кислорода и образованием богатого энергией соединения (АТФ) и восстановленных продуктов. Эти соединения участвуют на следующей темновой стадии в синтезе углеводов и других органических соединений из СО 2 .

    При образовании в качестве продукта простых углеводов (гексоз) суммарное уравнение фотосинтеза выглядит следующим образом:

    Путем дальнейших превращений из простых углеводов в растениях образуются более сложные углеводы, а также другие безазотистые органические соединения. Синтез аминокислот, белка и других органических азотсодержащих соединений в растениях осуществляется за счет минеральных соединений азота (а также фосфора и серы) и промежуточных продуктов обмена - синтеза и разложения - углеводов. На образование разнообразных сложных органических веществ, входящих в состав растений, затрачивается энергия, аккумулированная в виде макроэргических фосфатных связей АТФ (и других макроэргических соединений) при фотосинтезе и выделяемая при окислении - в процессе дыхания - ранее образованных органических соединений.

    Интенсивность фотосинтеза и накопление сухого вещества зависят от освещения, содержания углекислого газа в воздухе, обеспеченности растений водой и элементами минерального питания.

    При фотосинтезе растения усваивают углекислоту, поступившую через листья из атмосферы. Лишь небольшая часть СО 2 . (до 5% общего потребления) может поглощаться растениями через корни. Через листья растения могут усваивать серу в виде SО 2 . из атмосферы, а также азот и зольные элементы из водных растворов при некорневых подкормках растений. Однако в естественных условиях через листья осуществляется главным образом углеродное питание, а основным путем поступления в растения воды, азота и зольных элементов является корневое питание.

    Корневое питание

    Азот и зольные элементы поглощаются из почвы деятельной поверхностью корневой системы растений в виде ионов (анионов и катионов). Так, азот может поглощаться в виде аниона NO 3 и катиона NH 4 + (только бобовые растения способны в симбиозе с клубеньковыми бактериями усваивать молекулярный азот атмосферы), фосфор и сера - в виде анионов фосфорной и серной кислот - Н 2 РО 4 - и SO 4 2- , калий, кальций, магний, натрий, железо - в виде катионов К + , Са 2+ , Mg 2+ , Fe 3+ , а микроэлементы - в виде соответствующих анионов или катионов.

    Растения усваивают ионы не только из почвенного раствора, но и ионы, поглощенные коллоидами. Более того, растения активно (благодаря растворяющей способности корневых выделений, включающих угольную кислоту, органические кислоты и аминокислоты) воздействуют на твердую фазу почвы, переводя необходимые питательные вещества в доступную форму.

    Корневая система растений и ее поглотительная способность.

    Мощность корневой системы, ее строение и характер распределения в почве у разных видов растений резко различаются. Для примера достаточно сравнить известные всем слаборазвитые корешки салата с корневой системой капусты, картофеля или томатов, сопоставить объемы почвы, которые охватывают корни таких корнеплодов, как редис и сахарная свекла. Активная часть корней, благодаря которой происходит поглощение элементов минерального питания из почвы, представлена молодыми растущими корешками. По мере нарастания каждого отдельного корешка верхняя его часть утолщается, покрывается снаружи опробковевшей тканью и теряет способность к поглощению питательных веществ.

    Рост корня происходит у самого его кончика, защищенного корневым чехликом. В непосредственной близости к окончанию корешков располагается зона делящихся меристематических клеток. Выше ее находится зона растяжения, в которой наряду с увеличением объема клеток и образованием в них центральной вакуоли начинается дифференциация тканей с формированием флоэмы - нисходящей части сосудисто-проводящей системы растений, по которой происходит передвижение органически веществ из надземных органов в корень. На расстоянии 1-3 мм от кончика растущего корня находится зона образования корневых волосков, В этой зоне завершается формирование и восходящей части проводящей системы - ксилемы, по которой осуществляется передвижение воды (а также части поглощенных ионов и синтезированных в корнях органических соединений) от корня в надземную часть растений.

    Корневые волоски представляют собой топкие выросты наружных клеток с диаметром 5-72 мкм и длиной от 80 до 1500 мкм. Число корневых волосков достигает несколько сотен на каждый миллиметр поверхности корня в этой зоне. За счет образования корневых волосков резко, в десятки раз, возрастает деятельная, способная к поглощению питательных веществ поверхность корневой системы, находящаяся в контакте с почвой. (табл. 1)

    Таблица №1
    Сравнительное развитие корней и корневых волосков у различных культур
    Культура Корни Корневые волоски
    длина, м поверхность, см² число, млн длина, м поверхность, см²
    Овес 4,6 316 6,3 74 3419
    Рожь 6,4 503 12,5 1549 7677
    Соя 2,9 406 6,1 60 277
    Мятлик луговой 38,4 2129 51,6 5166 15806
    Примечание. Определение длины и поверхности корней и корневых волосков проводилось в полевых условиях в пробе почвы, отбиравшейся буром диаметром 7,5 см на глубину 15 см.

    Влияние корневой системы распространяется на большой объем почвы благодаря постоянному росту корней и возобновлению корневых волосков. Старые корневые волоски (продолжительность жизни каждого корневого волоска составляет несколько суток) отмирают, а новые непрерывно образуются уже на других участках растущего корешка. На том участке корня, где корневые волоски отмерли, кожица пробковеет, поступление воды и поглощение питательных веществ из почвы через нее ограничивается. Скорость роста корней у однолетних полевых культур может достигать 1 см в сутки. Растущие молодые корешки извлекают необходимые ионы из почвенного раствора на расстоянии от себя до 20 мм, а поглощенные почвой ионы --до 2-8 мм.

    По мере нарастания корня происходит, следовательно, непрерывное пространственное перемещение зоны активного поглощения в почве. При этом наблюдается явление хемотропизма, сущность которого заключается в том, что корневая система растений усиленно растет в направлении расположения доступных питательных веществ (положительный хемотропизм) либо ее рост тормозится в зоне высокой, неблагоприятной для растений концентрации солей (отрицательный хемотропизм). Недостаток элементов питания растений в доступной форме вызывает, как правило, образование относительно большей массы корней, чем при высоком уровне минерального питания.

    Наиболее интенсивно поглощение ионов осуществляется в зоне образования корневых волосков, и поступившие ионы передвигаются отсюда в надземные органы растений. Необходимо отметить, что корень является не только органом поглощения, но и синтеза отдельных органических соединений, в том числе аминокислот и белков. Последние используются для обеспечения жизнедеятельности и процессов роста самой корневой системы, а также частично транспортируются в надземные органы.

    Поглощение питательных веществ растениями через корни.

    За счет сосущей силы, возникающей при испарении влаги через устьица листьев, и нагнетающего действия корней находящиеся в почвенном растворе ионы минеральных солей вместе стоком воды могут поступать сначала в полые межклетники и поры клеточных оболочек молодых корешков, а затем транспортироваться в надземную часть растений по ксилеме - восходящей части сосудисто-проводящей системы, состоящей из омертвевших клеток без перегородок, лишенных живого содержимого. Однако внутрь живых клеток корня (как и надземных органов), имеющих наружную полупроницаемую цитоплазматическую мембрану, поглощенные и транспортируемые с водой ионы могут проникать «пассивно» - без дополнительной затраты энергии - только по градиенту концентрации - от большей к меньшей за счет процесса диффузии либо при наличии соответствующего электрического потенциала (для катионов - отрицательного, а анионов - положительного) на внутренней поверхности мембраны по отношению к наружному раствору.

    В то же время хорошо известно, что концентрация отдельных ионов в клеточном соке, как и в пасоке растений (транспортируемой по ксилеме из корней в надземные органы) чаще всего значительно выше, чем в почвенном растворе. В этом случае поглощение питательных веществ растениями должно происходить против градиента концентрации и невозможно за счет диффузии.

    Растения одновременно поглощают как катионы, так и анионы. При этом отдельные ионы поступают в растение совсем в другом соотношении, чем они содержатся в почвенном растворе. Одни ионы поглощаются корнями в большем, другие - в меньшем количестве и с разной скоростью даже при одинаковой их концентрации в окружающем растворе. Совершенно очевидно, что пассивное поглощение, основанное на явлениях диффузии и осмоса, не может иметь существенного значения в питании растений, носящем ярко выраженный избирательный характер.

    Исследования с применением меченых атомов убедительно показали также, что поглощение питательных веществ и дальнейшее их передвижение в растении происходит со скоростью, которая в сотни раз превышает возможную за счет диффузии и пассивного транспорта по сосудисто-проводящей системе с током воды.

    Кроме того, не существует прямой зависимости поглощения питательных веществ корнями растений от интенсивности транспирации, от количества поглощенной и испарившейся влаги.

    Все это подтверждает положение, что поглощение питательных веществ растениями осуществляется не просто путем пассивного всасывания корнями почвенного раствора вместе с содержавшимися в нем солями, а является активным физиологическим процессом, который неразрывно связан с жизнедеятельностью корней и надземных органов растений, с процессами фотосинтеза, дыхания и обмена веществ и обязательно требует затраты энергии.

    Схематически процесс поступления элементов питания в корневую систему растений выглядит следующим образом.

    К внешней поверхности цитоплазматической мембраны корневых волосков и наружных клеток молодых корешков ионы минеральных солей передвигаются из почвенного раствора с током воды и за счет процесса диффузии.

    Клеточные оболочки имеют довольно крупные поры или каналы и легкопроницаемы для ионов. Более того, целлюлозно-пектиновые стенки обладают высокой сорбирующей способностью. Поэтому в пространстве каналов клеточных оболочек и межклетников не только свободно передвигаются, но и концентрируются ионы из почвенного раствора. Здесь создается как бы своеобразный фонд ионов минеральных солей для последующего поступления внутрь клетки.

    Первым этапом поступления является поглощение (адсорбция) ионов на наружной поверхности цитоплазматической мембраны. Она состоит из двух слоев фосфолипидов, между которыми встроены молекулы белков. Благодаря мозаичной структуре отдельные участки цитоплазматической мембраны имеют отрицательные и положительные заряды, за счет которых может происходить одновременно адсорбция необходимых растению катионов и анионов из наружной среды в обмен на другие ионы.

    Обменным фондом катионов и анионов у растений могут являться ионы Н + и ОН - , а также Н + и НСО -3 , образующиеся при диссоциации угольной кислоты, выделяемой при дыхании.

    Адсорбция ионов на поверхности цитоплазматической мембраны носит обменный характер и не требует затраты энергии. В обмене принимают участие не только ионы почвенного раствора, но и ионы, поглощенные почвенными коллоидами. Вследствие активного поглощения растениями ионов, содержащих необходимые элементы питания, их концентрация в зоне непосредственного контакта с корневыми волосками снижается. Это облегчает вытеснение аналогичных ионов из поглощенного почвой состояния в почвенный раствор (в обмен на другие ионы).

    Транспорт адсорбированных ионов с наружной стороны цитоплазматической мембраны на внутреннюю против градиента концентрации и против электрического потенциала требует обязательной затраты энергии. Механизм такой «активной» перекачки весьма сложен. Она осуществляется с участием специальных «переносчиков» и так называемых ионных насосов, в функционировании которых важная роль принадлежит белкам, обладающим АТФ-азной активностью. Активный транспорт внутрь клетки через мембрану одних ионов, содержащих необходимые растениям элементы питания, сопряжен с встречным транспортом наружу других ионов, находящихся в клетке в функционально избыточном количестве.

    Первоначальный этап поглощения питательных веществ растениями из почвенного раствора - адсорбция ионов на поглощающей поверхности корня - постоянно возобновляется, поскольку адсорбированные ионы непрерывно перемещаются внутрь клеток корня.

    Поступившие в клетку ионы в неизменном виде либо уже в форме транспортных органических соединений, синтезируемых в корнях, передвигаются в надземные органы - стебли и листья, в места наиболее интенсивной их ассимиляции. Активный транспорт питательных веществ из клетки в клетку осуществляется по плазмодесмам, соединяющим цитоплазму клеток растений в единую систему - так называемый симпласт. При передвижении по симпласту часть ионов и метаболитов может выделяться в межклеточное пространство и передвигаться к местам усвоения пассивно с восходящим током воды по ксилеме.

    Поглощение корнями и транспорт питательных веществ тесно связаны с процессами обмена веществ и энергии в растительных организмах, с жизнедеятельностью и ростом как надземных органов, так и корней.

    Процесс дыхания является источником энергии, необходимой для активного поглощения элементов минерального питания. Этим обусловливается тесная связь между интенсивностью поглощения растениями элементов питания и интенсивностью дыхания корней. При ухудшении роста корней и торможении дыхания (при недостатке кислорода в условиях плохой аэрации или избыточном увлажнении почвы) поглощение питательных веществ резко ограничивается.

    Для нормального роста и дыхания корней необходим постоянный приток к ним энергетического, материала - продуктов фотосинтеза (углеводов и других органических соединений) из надземных органов. При ослаблении фотосинтеза уменьшается образование и передвижение ассимилятов в корни, вследствие чего ухудшается жизнедеятельность и снижается поглощение питательных веществ из почвы.

    Избирательное поглощение ионов растениями. Физиологическая реакция солей.

    Различные элементы питания в неодинаковой степени используются в процессах внутриклеточного обмена в растении для синтеза органических веществ и построения новых органов и тканей. Этим определяется неравномерность поступления отдельных ионов в корни, избирательное поглощение их растениями. Больше поступает в растение из почвы тех ионов, которые более необходимы для синтеза органических веществ, для построения новых клеток, тканей и органов.

    Если в растворе присутствует NH 4 Cl, то растения будут интенсивнее и в больших количествах поглощать (в обмен на ионы водорода) катионы NH 4 + поскольку они используются для синтеза аминокислот, а затем и белков. В то же время ионы Cl - необходимы растению в небольшом количестве, и поэтому поглощение их будет ограниченным. В почвенном растворе в этом случае будут накапливайся ионы H + и Cl - (соляная кислота), произойдет ею подкисление. Если в растворе содержится NaNO 3 , то растение будет в больших количествах и быстрее поглощать анионы NO 3 - , в обмен на анионы НСO 3 - . В растворе будут накапливаться ионы Na + и НСO 3 - (NaНСO 3), произойдет его подщелачивание.

    Избирательное поглощение растениями катионов и анионов из состава соли обусловливает ее физиологическую кислотность или физиологическую щелочность.

    Соли, из состава которых в больших количествах поглощается анион, чем катион, - NaNO 3 , KNO 3 , Ca(NO 3) 2 - и в результате происходит подщелачиванне раствора, являются физиологически щелочными.

    Соли, из которых катион поглощается растениями в больших количествах, чем анион, - NH 4 Cl, (NH 4) 2 SO 4 , (NH 4) 2 CO 3 , KCl, K 2 SO 4 , - и в результате происходит подкисление раствора, являются физиологически кислыми.

    Физиологическая реакция солей, используемых в качестве минеральных удобрений, обязательно должна учитываться во избежание ухудшения условий роста и развития сельскохозяйственных культур.

    Влияние условий внешней среды и микроорганизмов на поглощение питательных веществ растениями

    Поглощение растениями питательных веществ в большой степени зависит от свойств почвы - реакции и концентрации почвенного раствора, температуры, аэрации, влажности, содержания в почве доступных форм питательных веществ, продолжительности и интенсивности освещения и других условий внешней среды. Поступление питательных веществ в растение заметно снижается при плохой аэрации почвы, низкой температуре, избытке или резком недостатке влаги в почве. Особенно сильное влияние на поступление питательных веществ оказывают реакция почвенного раствора, концентрация и соотношение солей в нем. При избыточной концентрации солей в почвенном растворе (например, в засоленных почвах) поглощение растениями воды и питательных веществ резко замедляется.

    Корни растений имеют очень высокую усвояющую способность и могут поглощать питательные вещества из сильно разбавленных растворов.

    Важное значение для нормального развития корней имеет также соотношение солей в растворе, его физиологическая уравновешенность. Физиологически уравновешенным называется раствор, в котором отдельные питательные вещества находятся в таких соотношениях, при которых происходит наиболее эффективное использование их растением. Раствор, представленный какой-либо одной солью, физиологически неуравновешен.

    Одностороннее преобладание (высокая концентрация) в растворе одной соли, особенно избыток какого-либо одновалентного катиона, оказывает вредное действие на растение. Развитие корней происходит лучше в многосолевом растворе. В нем проявляется антагонизм ионов, каждый ион взаимно препятствует избыточному поступлению другого иона в клетки корня. Например, Са 2+ в высоких концентрациях тормозит избыточное поступление K + , Na + или Mg 2+ и наоборот Такие же антагонистические отношения существуют и для ионов K + и Na + , K + и NH 4 + , K + и Mg 2+ , NO 3 - и H 2 PO 4 , Cl - и H 2 PO 4 - и др.

    Физиологическая уравновешенность легче всего восстанавливается при введении в раствор солей кальция. При наличии кальция в растворе создаются нормальные условия для развития корневой системы, поэтому в искусственных питательных смесях Са 2+ должен преобладать над другими ионами.

    Особенно сильно ухудшается развитие корней и поступление в них питательных веществ при высокой концентрации ионов водорода, т.е. при повышенной кислотности раствора. Высокая концентрация в растворе ионов водорода оказывает отрицательное влияние на физико-химическое состояние цитоплазмы клеток корня. Наружные клетки корня ослизняются, нарушается их нормальная проницаемость, ухудшается рост корней и поглощение ими питательных веществ. Отрицательное действие кислой реакции сильнее проявляется при отсутствии или недостатке других катионов, особенно кальция, в растворе Кальций тормозит поступление ионов H + , поэтому при повышенном количестве кальция растения способны переносить более кислую реакцию, чем без кальция.

    Реакция раствора оказывает влияние на интенсивность поступления отдельных ионов в растение и обмен веществ. При кислой реакции повышается поступление анионов (вместе с ионами Н +), но затрудняется поступление катионов, нарушается питание растений кальцием и магнием и тормозится синтез белка, подавляется образование сахаров в растении. При щелочной реакции усиливается поступление катионов и затрудняется поступление анионов.

    Основной запас питательных веществ находится в почве в форме различных труднорастворимых соединений, для усвоения которых необходимо активное воздействие корней на твердую фазу почвы и тесный контакт между корнями и частицами почвы. В процессе жизнедеятельности растений корни выделяют в окружающую среду углекислоту и некоторые органические кислоты, а также ферменты и другие органические вещества. Под влиянием этих выделений, концентрация которых бывает особенно высокой в зоне непосредственного контакта корней с частицами почвы, происходит растворение содержащихся в ней минеральных соединений фосфора, калия и кальция, вытеснение в раствор катионов из поглощенного почвой состояния, высвобождение фосфора из его органических соединений.

    Питательные вещества наиболее активно усваиваются растениями из той части почвы, которая находится в непосредственном контакте с корнями. Поэтому все мероприятия, способствующие лучшему развитию корней (хорошая обработка почвы, известкование кислых почв и т.д.), обеспечивают и лучшее использование растениями питательных веществ из почвы.

    Питание растений осуществляется при тесном взаимодействии с окружающей средой, в том числе с огромным количеством разнообразных микроорганизмов, населяющих почву. Количество микроорганизмов особенно велико в ризосфере, т.е. в той части почвы, которая непосредственно соприкасается с поверхностью корней. Используя в качестве источника пищи и энергетического материала корневые выделения, микроорганизмы активно развиваются на корнях и вблизи них и способствуют мобилизации питательных веществ почвы.

    Ризосферные и почвенные микроорганизмы играют важную роль в превращении питательных веществ и вносимых в почву удобрений. Микроорганизмы разлагают находящиеся в почве органические вещества и вносимые органические удобрения, в результате чего содержащиеся в них элементы питания переходят в усвояемую для растений минеральную форму. Некоторые микроорганизмы способны разлагать труднорастворимые минеральные соединения фосфора и калия и переводить их в доступную для растений форму. Ряд бактерий, усваивая молекулярный азот воздуха, обогащает почву азотом. С жизнедеятельностью микроорганизмов связано также образование в почве гумуса.

    При определенных условиях в результате деятельности микроорганизмов питание и рост растений могут ухудшаться. Микроорганизмы, как и растения, потребляют для питания и построения своих тел азот и зольные элементы, т.е. являются конкурентами растений в использовании минеральных веществ. Не все микроорганизмы полезны для растений. Некоторые из них выделяют ядовитые для растений вещества или являются возбудителями различных заболеваний. В почве имеются также микробы, восстанавливающие нитраты до молекулярного азота (денитрификаторы), в результате их деятельности происходят потери азота из почвы в газообразной форме.

    В связи с этим одна из важных задач земледелия - создание соответствующими приемами агротехники благоприятных условий для развития полезных микроорганизмов и ухудшение условий для развития вредных.

    Отношение растений к условиям питания в разные периоды роста

    В разные периоды роста растения предъявляют неодинаковые требования к условиям внешней среды, в том числе и к питанию. Поглощение растениями азота, фосфора и калия в течение вегетации происходит неравномерно.

    Следует различать критический период питания (когда размеры потребления могут быть ограниченными, но недостаток элементов питания в это время резко ухудшает рост и развитие растений) и период максимального поглощения, который характеризуется наиболее интенсивным потреблением питательных веществ.

    Рассмотрим общие закономерности в потреблении питательных веществ растениями в течение вегетации. В начальный период развития растения потребляют относительно небольшие абсолютные количества всех питательных веществ, но весьма чувствительны как к недостатку, так и к избытку их в растворе.

    Начальный период роста - критический в отношении фосфорного питания. Недостаток фосфора в раннем возрасте настолько сильно угнетает растения, что урожай резко снижается даже при обильном питании фосфором в последующие периоды. (табл. 3)

    Вследствие высокой напряженности синтетических процессов при слаборазвитой еще корневой системе молодые растения особенно требовательны к условиям питания. Следовательно, в прикорневой зоне в этот период питательные вещества должны находиться в легкорастворимой форме, но концентрация их не должна быть высокой, с преобладанием фосфора над азотом и калием. Обеспечение достаточного уровня снабжения всеми элементами с начала вегетации имеет важное значение для формирования урожая. Так, у злаковых зерновых культур уже в период развертывания первых трех-четырех листочков начинается закладка и дифференциация репродуктивных органов - колоса или метелки. Недостаток азота в этот период даже при усиленном питании в последующем приводит к уменьшению числа колосков в метелке или колосе и снижению урожая.

    Размеры потребления всех элементов питания растениями значительно возрастают в период интенсивного роста надземных органов - стеблей и листьев. Темпы накопления сухого вещества могут опережать поступление питательных веществ, а относительное их содержание в растениях снижается по сравнению с предшествующим периодом. Ведущая роль в ростовых процессах принадлежит азоту. Повышенное азотное питание способствует усиленному росту вегетативных органов, формированию мощного ассимиляционного аппарата. Недостаток же азота в этот период приводит к угнетению роста, а в последующем - к снижению урожая и его качества.

    Ко времени цветения и начала плодообразования потребность в азоте у большинства растений уменьшается, но возрастает роль фосфора и калия. Это обусловлено физиологической ролью последних - их участием в синтезе и передвижении органических соединений, обмене энергии, особенно интенсивно происходящих при формировании репродуктивных органов и образовании запасных веществ в товарной части урожая.

    В период плодообразования, когда нарастание вегетативной массы заканчивается, потребление всех питательных веществ постепенно снижается, а затем их поступление приостанавливается. Дальнейшее образование органического вещества и другие процессы жизнедеятельности обеспечиваются в основном за счет повторного использования (реутилизации) питательных веществ, ранее накопленных в растении.

    Различные сельскохозяйственные культуры отличаются по размерам и интенсивности поглощения питательных элементов в течение вегетационного периода. Все зерновые злаковые (за исключением кукурузы), лен, конопля, ранний картофель, некоторые овощные культуры отличаются коротким периодом интенсивного питания - основное количество питательных веществ потребляют в сжатые сроки. Например, озимая рожь уже за осенний период поглощает 25-30% всего количества питательных веществ, тогда как сухая масса растений за этот период достигает всего лишь 10% конечного урожая.

    Яровая пшеница за сравнительно короткий промежуток - от выхода в трубку до конца колошения (около месяца) - потребляет 2/3-3/4 всего количества питательных веществ.

    Средне- и позднеспелые сорта картофеля наибольшее количество питательных веществ потребляют в июле: за этот месяц поглощается почти 40% азота, более 50 - фосфора и 60% калия от конечного содержания их в урожае. Ранние сорта картофеля отличаются еще более сжатым сроком интенсивного потребления питательных веществ.

    Лен имеет ярко выраженный период максимального потребления элементов минерального питания - от фазы бутонизации до цветения, а хлопчатником основное количество питательных веществ потребляется с начала бутонизации до массового образования волокна в коробочках.

    Некоторые растения, например подсолнечник и сахарная свекла, характеризуются более плавным и растянутым потреблением питательных веществ, поглощение которых продолжается почти до конца вегетации.

    Отдельные элементы питания поглощаются растениями с различной интенсивностью: у кукурузы, например, наиболее быстрыми темпами идет потребление калия, затем азота и значительно медленнее поглощается фосфор.

    Поглощение калия полностью заканчивается к периоду образования метелок, а азота - к периоду формирования зерна. Поступление фосфора более растянуто и продолжается почти до конца вегетации.

    Конопля в первый месяц очень интенсивно поглощает азот и калий. Поступление азота полностью завершается через 3, а калия - через 5 недель после появления всходов, тогда как интенсивное поглощение фосфора продолжается почти до конца вегетации.

    Потребление основных элементов питания сахарной свеклой также происходит неравномерно. В первую декаду после всходов отношение Р: N: К в растениях равно 1,0: 1,5: 1,4. Затем в период интенсивного нарастания листьев это соотношение изменяется в сторону увеличения поглощения азота и калия, составляя в мае 1,0 ; 2,5: 3,0, в июне - 1,0: 3,0: 3,5, в июле 1,0: 4,0: 4,0. В августе, когда происходит образование корней и накопление в них сахара, соотношение между этими элементами становится 1,0: 3,6: 5,5, т.е. особенно сильно увеличивается поглощение калия. Слишком обильное азотное питание в период образования корня и накопления в нем сахара нежелательно, так как стимулирует рост ботвы в ущерб росту корня и сахаронакоплению. В этот период очень большое значение имеет достаточный уровень обеспеченности растений калием и фосфором.

    Неодинаковая количественная потребность и интенсивность поглощения растениями отдельных элементов питания должна учитываться при разработке системы применения удобрений. Особенно важно обеспечить благоприятные условия питания растений с начала вегетации и в периоды максимального поглощения. Это достигается сочетанием различных способов внесения удобрений: в основное удобрение до посева, при посеве и в подкормки.

    Задача основного удобрения - обеспечение питания растений на протяжении всей вегетации, поэтому до посева в большинстве случаев применяют полную норму органических удобрений и подавляющую часть минеральных. Припосевное удобрение (в рядки, при посадке в лунки, гнезда) в относительно небольших дозах вносят для снабжения растений в начальный период развития легкодоступными формами питательных веществ, прежде всего фосфора. Для снабжения растений элементами питания в наиболее ответственные периоды вегетации применяются подкормки в дополнение к основному и припосевному удобрению (в отдельных случаях в подкормки может вноситься значительная доля общей нормы удобрений, например азота под озимые, хлопчатник и т. д.). Выбор срока, способа внесения удобрений и заделки их в почву зависит не только от особенностей биологии, питания и агротехники культур, но и от почвенно-климатических условий, вида и формы удобрений

    Регулируя условия питания растений по периодам роста в соответствии с их потребностью путем внесения удобрений, можно направленно воздействовать на величину урожая и его качество.

    Питание растений - это процесс поглощения и усвоения ими питательных элементов. Благодаря питанию растений происходит круговорот веществ и энергии, который связывает мир минеральной, неживой природы с миром живых организмов. Д. Н. Прянишников писал: “Поглощение ионов и солей, включение их в метаболизм и круговорот обмена веществ составляет сущность питания растений”. Знание закономерностей и особенностей питания растений позволяет правильно выбирать виды и формы удобрений, рассчитывать дозы их внесения, разрабатывать системы удобрения культур, природоохранные мероприятия.

    В живой природе различают два типа питания – гетеротрофный и автотрофный. При гетеротрофном типе питания, характерном для животных организмов, грибов и микробов, используются белки, жиры, углеводы, иные сложные органические соединения, выра­ботанные другими организмами. Автотрофы – зеленые растения и некоторые микроорганизмы- способны пи­таться исключительно неорганическими (минеральными) веществами. Они в отличие от других орга­низмов, используя энергию солнечного света, могут строить свое тело, создавая из низкомолекулярных соединений (С0 2 , Н 2 0) и минеральных солей сложные органические соединения. Все необходимые для питания элементы растения получают через листья и корни – из воздуха и почвы. Поэтому различают воздушное и корневое питание растений.

    Воздушное питание состоит в усвоении зеленым растением, главным образом листьями, углекислого газа с помощью световой энергии. В процессе фотосинтеза растения усваивают углекислый газ (СО 2 ) и образуют органические соединения (углеводы, белки, жиры), содержащие восстановленный углерод. Для восстановления углерода они используют водород воды, при этом выделяя в атмосферу свободный (молекулярный) кислород. Источником энергии при фотосинтезе служит солнечный свет, поглощаемый хлорофиллом, который не рассеивается в виде тепла, а преобразуется в химическую энергию. Таким образом, в процессе фотосинтеза из углекислоты воздуха и воды почвы при участии солнечных лучей образуются безазотистые органические вещества (углеводы).

    6СО 2 + 12Н 2 О+2874 КДж =С 6 Н 12 О 6 + 6О 2 .

    Простые углеводы используются растением для синтеза сложных: сахарозы, крахмала и клетчатки (CH 2 O) 6 n , а также белков, жиров, органических кислот и т. д.

    Одновременно с образованием органических веществ в растениях происходит их распад в процессе дыхания. Сущность дыхания состоит в окислении углеводов кислородом. Этот процесс противоположен фотосинтезу. Если фотосинтез сопровождается поглощением энергии, то при дыхании происходит освобождение энергии. При дыхании расходуется примерно 20 % органического вещества, созданного во время фотосинтеза. Дыхание проходит по следующей схеме:

    С б Н 12 0 6 +60 2 =6С0 2 +6Н 2 0+686 ГДж.

    Выделяющаяся при дыхании энергия используется в растениях на синтез более сложных органических веществ, на поглощение корнями питательных элементов и воды из почвы и передвижение их к листьям, а от них-к растущим частям: точкам роста, цветкам, семенам, клубням и т. д. В образовании органи­ческих соединений как источник энергии участвует аденозинтрифосфорная кислота (АТФ).

    В обычных условиях растения используют не больше 2-3 % солнечной энергии. Поэтому одной из задач земледелия является увеличение фотосинтетической деятельности возделываемых культур. Этому способствуют увеличение листовой поверхности и удлинение периода ее жизнедеятельности, оптимизация питания растений, выведение более продуктивных сортов и раз­работка новых технологий возделывания.

    Из воздуха растения поглощают не только углекислый газ, но и азот (бобовые культуры), а также легкорастворимые соли. Эта их способность используется при внекорневых подкормках, а также обработке средствами защиты растений.

    При корневом питании растения поглощают корнями минеральные элементы и включают их в обмен веществ между растением и внешней средой. Поступле­ние элементов через корни, их передвижение и усвоение тесно связаны с фотосинтезом, дыханием, другими биохимическими процессами и требуют затрат энергии. При этом растения обладают избирательной способностью поглощения элементов питания.

    Корнями растения усваивают ионы (катионы и ани­оны) из почвенного раствора, а также из почвенных коллоидов. При этом азот поглощается в виде анионов NO 3 - и катионов NH 4 + (бобовые способны усваивать из атмосферы и молекулярный азот). Фосфор и сера поглощаются в форме анионов НРО 4 -2 , РО 4 -3 , Н 2 РО 4 - , SO 4 -2 ; калий, кальций, магний, натрий, железо – в виде катионов К + , Са 2+ , Mg 2+ , Na + , Fe 3+ , микроэлементы – в виде анионов и катионов. Кроме этих элементов корни растений способны поглощать из почвы СО 2 (до 5 % от общего его потребления), а также аминокислоты, витамины, ферменты и некоторые другие растворимые органические вещества.

    Корневые системы растений существенно различаются по строению, форме, распределению в почве и поглотительной способности. Так, по данным Н. А. Качинского, масса корней в условиях нечерноземной зоны достигала у овса 28 % от надземной массы, красного клевера – 69, на западно-предкавказском черноземе у кукурузы – 16, озимой пшеницы – 70, люцерны – 166 % веса надземной части растения.

    У большинства культурных растений корни проникают на глубину до 2 м, но их основная масса располагается в слое почвы на глубине 30–50 см. Интенсивность развития корневой системы в значительной степени зависит от обеспеченности почвы питательными элементами. В бедных почвах развивается более мощная корневая система в ущерб урожаю.

    По форме корневые системы растений могут быть стержневыми или мочковатыми. Поверхность корней, поглощающая элементы питания, достигает больших размеров. Например, у ячменя общая поглощающая поверхность корней и корневых волосков на одном гектаре достигает площади 200–300 га. Корень состоит из корневого чехлика, зоны деления, зоны растяжения, зоны корневых волосков. Наибольшей способностью к поглощению обладают корневые волоски молодых корней. На 1 мм 2 корня может располагаться 300–400 корневых волосков. У зерновых они бывают длиной 4–5 мм, у мятлика лугового 10–12 мм.

    Корневые волоски обычно живут несколько суток и по мере старения отмирают. Корни не только поглощают питательные элементы из почвы, в них происходит также синтез органических соединений (аминокислот, белков), которые используются самой корневой системой и частично поступают в надземную часть растения.

    Движение питательных элементов можно разделить на три этапа: переход ионов из твердой части почвы в почвенный раствор и передвижение их к поверхности корней; проникновение ионов через цитоплазматическую мембрану в клетку корня и передвижение их по корням в надземные органы, растений.

    Скорость передвижения питательных элементов в почве зависит от свойств почвы и поглощаемых ионов. К корням растений ионы питательных элементов поступают либо с потоком воды, либо диффузионно, т. е. благодаря проникновению молекул одного вещества в другое при непосредственном соприкосновении (или через пористую перегородку), обусловленному тепловым движением молекул. Установлено, что при высокой концентрации ионов в почвенном растворе они поступают к корням с потоком раствора, при низкой насыщенности почвенного раствора ионами и высокой потребности в них растений ионы передвигаются к корням диффузией. Фосфор и кальций доставляются к растениям в основном диффузией, а кальций и магний – с током почвенного раствора. Нитраты передвигаются в почве быстрее, чем фосфаты, и поглощаются интенсивнее: если фосфаты поглощаются в радиусе 0,1 см от корня, то нитраты – в радиусе 1 см.

    В соответствии с современными представлениями питательные элементы в растительную клетку по ступают через цитоплазматическую мембрану, или плазмалемму. Цитоплазматическая мембрана состоит из двух слоев фосфолипидов, которые имеют полярные «головки» – гидрофильные группы и неполярные «хвосты» – гидрофобные группы. В определенных участках плазмалеммы встроены белки-переносчики. Из белков построены поры и каналы в мембране. Часть белков представлена ферментами. У различных организмов строение и состав мембраны, или плазмалеммы, неодинаковы. Даже в одной клетке мембраны бывают различные: цитоплазматические, вакулярные, хлоропластные и др.

    Мембрана очень динамична – она может изгибаться, разрываться и снова соединяться; на поверхности она несет заряды, которые могут изменяться, что обеспечивает проникновение в клетку катионов и анионов; через поры, каналы (плазмодесмы) мембраны проникают вода и ионы; проницаемость мембраны зависит от генетических свойств клетки и внешних условий. Изменение зарядов на цитоплазме клетки происходит благодаря белковым веществам, которые по своей природе амфотерны. Растения предпочитают брать пищу из почвенного раствора слабой концентрации. Для нормального их развития достаточно, если в 1 л содержится по 20–30 мг азота и калия, 10–15 мг фосфора, 1–2 мг бора и 5–7 мг марганца.

    Положительно заряженные участки мембраны имеют группы Н + , а отрицательно – ОН - , которые способны обмениваться на анионы и катионы почвенного раствора. Обмен связан не только с амфотерными свойствами белков цитоплазмы, но и с процессами дыхания. Выделяемая при этом корнями Н 2 СОз распадается на Н + и НСО 3 - . Обменным фондом служат также органические кислоты, образующиеся в растениях и выделяемые на поверхность клетки. Наконец, процессы обмена катионов и анионов между корнями и почвенными коллоидами происходят при физико-химическом обмене (поглощении).

    Чем питаются растения? Дело в том, что для нормального роста и развития этих организмов необходимы особые условия. Какие именно? Об этом вы узнаете из нашей статьи.

    Что такое питание

    Осуществление процесса обмена веществ является признаком всех живых организмов. Его составной частью и является питание. Его суть заключается в поступлении веществ к тканям и органам, их преобразовании и усвоении. Чем питаются растения? Подобно другим существам, им необходима энергия, заключенная в связях сложных химических соединений. Особенностью большинства растений является то, что все необходимые элементы они получают из воздуха и почвы. Для человека знания о значении питания для растений имеет огромное значение, поскольку позволяют значительно увеличить урожайность.

    Способы питания организмов

    По типу питания организмы можно объединить в две группы. Это авто- и гетеротрофы. Представители первых самостоятельно синтезируют органические вещества. К ним относятся растения и некоторые виды бактерий. Для создания органики автотрофы используют разные виды энергии. В зависимости от этого различают фото- и хемотрофы. Растения и сине-зеленые водоросли в ходе биосинтеза используют энергию солнечного излучения. Некоторые виды бактерий в ходе питания окисляют различные минеральные соединения. Они относятся к группе хемотрофов.

    Животные, грибы и часть бактерий питаются уже готовыми органическими соединениями, поглощая их разными способами. Такие организмы называют гетеротрофами.

    В природе существуют необычные виды растений. И способ их питания может изменяться в зависимости от условий окружающей среды. Это миксотрофы. Они способны к фотосинтезу, а при необходимости могут поглощать и готовую органику. Их примерами являются росянка и эвгленовые водоросли.

    Минеральное питание растений

    Каждый огородник знает, что урожайность во многом определяется количеством влаги и плодородием почвы. Действительно, для роста растениям необходимы растворы минеральных солей, которые они поглощают при помощи корня. По элементам проводящей ткани они передвигаются по стеблю к листьям. Такой ток веществ называется восходящим. Это и есть почвенное питание растений.

    Какие элементы являются самыми важными? Прежде всего это магний, кальций, фосфор, железо и сера. Это макроэлементы, которые необходимы растениям в больших количествах. Каждый из них незаменим. Не меньшее значение для развития корня и побега имеют микроэлементы. К ним относятся кобальт, медь, бор, цинк и молибден. В агротехнических целях эти компоненты вносятся в почву в качестве удобрений.

    Особое значение для роста побега имеет азот. Если вы увидели, что листья и стебли растений на вашем участке начали желтеть и вянуть - это явный признак нехватки этого элемента. Достаточное количество азота содержит воздух. Он составляет практически 78% в этой газовой смеси. Но растения не способны усваивать атмосферный азот. Природными помощниками в этом вопросе являются нитрифицирующие бактерии. Они преобразуют атмосферный азот в растворимые соли. Их и поглощают растения из почвы вместе с водой. Человек вносит азот в виде различных удобрений - калийной селитры, карбамидов, сульфатов аммония. Добавлять в почву их необходимо весной, когда начинается формирование побега.

    Эффективность минерального питания растений зависит от содержания в почве воды. Дело в том, что растения могут поглощать все необходимые им вещества только в растворенном виде. Поэтому в засушливой местности многие растения не выживают. Но чрезмерное увлажнение также не приносит пользы. Корни начинают загнивать и постепенно отмирают.

    Важным компонентом почвы является воздух. Хорошая аэрация также является необходимым условием развития корня, а значит, и других частей растения. Рыхлению почвы способствует не только человек, но и ее обитатели. Дождевые черви и насекомые проделывают в ней многочисленные ходы. При этом они обогащают почву кислородом и перемещают органические вещества с ее поверхности вглубь.

    Воздушное питание растений

    Дыхание и фотосинтез являются противоположными процессами. Они являются жизненно необходимыми и в растении протекают одновременно. В чем суть воздушного питания растений? В листья поступает углекислый газ, который вступает в сложную многоступенчатую реакцию с другими неорганическими веществами. В результате образуется глюкоза, которую растения используют в качестве источника энергии. Этот процесс называется фотосинтезом.

    Почвенное и воздушное питание растений тесно взаимосвязаны. Органика, которая образуется в листьях, поступает к подземным частям. И наоборот, водные растворы минеральных компонентов передвигаются из корня к побегу.

    Что такое фотосинтез

    Питание растений биология рассматривает в планетарном масштабе. В ходе фотосинтеза образуется не только моносахарид глюкоза, но и кислород. Этот газ необходим для дыхания не только животным, грибам и бактериям, но и самим растениям.

    Процесс фотосинтеза происходит в два этапа: световой и темновой. Солнечная энергия поглощается зеленым пигментом хлорофиллом. В результате этого первоначально происходит фотолиз воды: под действием солнечного света она разлагается на кислород и водород. Далее осуществляется процесс восстановления углекислого газа. Для этого солнечный свет уже не нужен.

    Необходимые условия

    Чем питаются растения в ходе фотосинтеза? Этот процесс происходит в особых структурах клеток растений, которые называются пластидами хлоропластами. Они имеют зеленый цвет, обусловленный наличием красящих веществ - пигментов. Пластиды этого вида содержат хлорофилл.

    Для протекания фотосинтеза необходимы вода и углекислый газ. Начинается химическая реакция только при наличии солнечного света. Углекислый газ проникает в растение через устьица листьев, а воду всасывают корни из почвы.

    Насекомоядные

    На примере этой группы организмов можно рассмотреть необычные способы питания растений. Этих представителей называют насекомоядными, или хищными. В природе их насчитывается более 600 тысяч видов.

    Они имеют ловчие аппараты, с помощью которых охотятся на насекомых. При этом данные растения способны и к автотрофному питанию. Способность поглощать готовую органику делает их менее зависимыми от азота, содержащегося в почве.

    Большинство хищных растений являются многолетними травами, иногда встречаются небольшие кустарники. Их типичными примерами являются росянка и пузырчатка. Самое крупное растение-хищник растет на территории Австралии. Это гигантский библис. Жертвами этого кустарника являются насекомые, ящерицы и даже лягушки.

    Для охоты у них есть целый ряд приспособлений. Листья видоизменены в специальные ловчие органы. Они имеют железы, которые выделяют пищеварительные ферменты.